c-Myc Accelerates S-Phase and Requires WRN to Avoid Replication Stress
نویسندگان
چکیده
c-Myc interacts with components of the pre-replication complex and directly regulates DNA replication [1]. However the consequences of this novel c-Myc function on cell cycle dynamics and replication-associated damage are unknown. Here, we show that c-Myc overexpression in primary human fibroblasts markedly accelerates S-phase while c-Myc deficient fibroblasts exhibit a prolonged S-phase. We also show that the Werner DNA helicase protein (WRN) plays a critical role in supporting c-Myc-driven S-phase, as depletion of WRN in c-Myc overexpressing cells increases DNA damage specifically at sites of DNA synthesis. This excess DNA damage activates a "replication stress" pathway involving ATR, CHK1, CHK2, and p53, leading to rapid senescence of WRN deficient c-Myc overexpressing cells. Indeed, depletion of p53 rescues this senescence response. We propose that WRN functions to repair abnormal replication structures caused by the acceleration of DNA replication by c-Myc. This work provides an additional mechanistic explanation for c-Myc-induced DNA damage and senescence, and reveals a vulnerability of c-Myc overexpressing cells that could potentially be exploited in cancer therapy.
منابع مشابه
Deficiency MYC-Driven Tumorigenesis Is Inhibited by WRN Syndrome Gene
MYC-induced DNA damage is exacerbated inWRN-deficient cells, leading to replication stress and accelerated cellular senescence. To determine whether WRN deficiency impairs MYC-driven tumor development, we used both xenograft and autochthonous tumor models. Conditional silencing of WRN expression in c-MYC overexpressing non–small cell lung cancer xenografts impaired both tumor establishment and ...
متن کاملRECQL5 plays co-operative and complementary roles with WRN syndrome helicase
Humans have five RecQ helicases, whereas simpler organisms have only one. Little is known about whether and how these RecQ helicases co-operate and/or complement each other in response to cellular stress. Here we show that RECQL5 associates longer at laser-induced DNA double-strand breaks in the absence of Werner syndrome (WRN) protein, and that it interacts physically and functionally with WRN...
متن کاملWRN is required for ATM activation and the S-phase checkpoint in response to interstrand cross-link-induced DNA double-strand breaks.
Werner syndrome (WS) is a human genetic disorder characterized by extensive clinical features of premature aging. Ataxia-telengiectasia (A-T) is a multisystem human genomic instability syndrome that includes premature aging in some of the patients. WRN and ATM, the proteins defective in WS and A-T, respectively, play significant roles in the maintenance of genomic stability and are involved in ...
متن کاملWRN helicase regulates the ATR-CHK1-induced S-phase checkpoint pathway in response to topoisomerase-I-DNA covalent complexes.
Checkpoints are cellular surveillance and signaling pathways that coordinate the response to DNA damage and replicative stress. Consequently, failure of cellular checkpoints increases susceptibility to DNA damage and can lead to profound genome instability. This study examines the role of a human RECQ helicase, WRN, in checkpoint activation in response to DNA damage. Mutations in WRN lead to ge...
متن کاملATR and ATM differently regulate WRN to prevent DSBs at stalled replication forks and promote replication fork recovery.
Accurate response to replication arrest is crucial to preserve genome stability and requires both the ATR and ATM functions. The Werner syndrome protein (WRN) is implicated in the recovery of stalled replication forks, and although an ATR/ATM-dependent phosphorylation of WRN was observed after replication arrest, the function of such modifications during the response to perturbed replication is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2009